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ABSTRACT

Indirect and direct methods have been developed for recon-
structing parametric images from dynamic PET data. Indirect
methods are relatively simple and easy to implement because
the reconstruction and kinetic modeling are performed in two
separate steps. Direct methods estimate the parametric im-
ages directly from the dynamic PET data and are statistically
more ef cient, but the algorithms are often dif cult to imple-
ment. This paper presents a simple, monotonically conver-
gent iterative algorithm for direct reconstruction of paramet-
ric images. Each iteration of the proposed algorithm consists
of two separate steps: reconstruction of dynamic images fol-
lowed by a pixel-wise weighted nonlinear least squares tting.
This algorithm resembles the empirical iterative implementa-
tion of the indirect approach, but converges to the solution of
the direct formulation.

Index Terms— Image reconstruction, tracer kinetic mod-
eling, parametric imaging, dynamic PET

1. INTRODUCTION

Parametric imaging using dynamic positron emission tomog-
raphy (PET) provides important information for biological re-
search and clinical diagnosis. To obtain a parametric image,
a typical approach is to reconstruct a sequence of emission
images from the measured projection data rst, and then to t
the time activity curve (TAC) at each pixel to a linear or non-
linear kinetic model. To obtain an ef cient estimate, the noise
distribution of the reconstructed emission images should be
modeled in the kinetic analysis. However, exact modeling of
the noise distribution in emission images reconstructed by it-
erative methods is dif cult because the noise is space-variant
and object-dependent. Usually the space-variant noise vari-
ance and correlations between pixels are simply ignored in
the kinetic analysis, which leads to sub-optimal results. Direct
reconstruction of parametric images from the raw projection
data solves this problem by combining kinetic modeling and
emission image reconstruction into a single formula. It allows
accurate modeling of the detector response of PET systems
and Poisson noise statistics in data. It has been shown that
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direct reconstruction can achieve better bias-variance tradeoff
compared with indirect methods [1, 2].

One drawback of direct reconstruction is that the opti-
mization algorithms are usually complex when compared to
indirect methods, because the kinetic parameters are involved
in the reconstruction formulation nonlinearly [1]. For indirect
methods, optimization algorithms for both image reconstruc-
tion and nonlinear least squares (NLS) kinetic tting have
been well developed. To take advantages of these results, here
we develop a simple, easy to implement and montonically
convergent algorithm for direct reconstruction. Each itera-
tion of the proposed algorithm consists of two separate steps:
reconstruction of dynamic images and a pixel-wise weighted
NLS kinetic tting. The algorithm resembles the empirical it-
erative implementation of the indirect approach (e.g. [3]), but
pursuits the solution of direct reconstruction. Since NLS is
used iteratively in the proposed algorithm, we call it iterative
NLS (INLS).

2. RECONSTRUCTION OF PARAMETRIC IMAGES

2.1. Indirect Methods

In indirect methods, the reconstruction of emission images
and kinetic modeling are treated separately. Ef cient algo-
rithms for both image reconstruction and kinetic modeling
have been developed.

2.1.1. Emission Image Reconstruction

PET data are modeled as a collection of independent Poisson
random variables with the expectation ȳm in frame m related
to the image xm through an af ne transform

ȳm = Pxm + rm, (1)

where P ∈ IRM×N is the detection probability matrix with
element (i, j) being the probability of detecting an event orig-
inated in voxel j by detector pair i, and rm ∈ IRM is the
expectation of scattered and random events in the mth frame.
The log-likelihood function of the dynamic data set, omitting
constants that are independent of x, is

L(y|x) =
∑
m

∑
i

yim log ȳim − ȳim, (2)
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where y = {ym} denotes the measured dynamic sinograms
and x = {xm} denotes the unknown dynamic images.

The estimation of the dynamic emission images x can be
achieved by the penalized maximum likelihood method that
maximizes an objective function as

x̂ = arg max
x≥0

L(y|x)− βU(x), (3)

where U(x) is a roughness penalty for regularizing the noise
and β is the regularization parameter that controls the tradeoff
between the resolution and noise. Commonly used penalty
functions can be written in the following form

U(x) =
∑
m

αmU(xm), U(xm) =
K∑

k=1

ψk

(
[Dxm]k

)
, (4)

where αm is the weighting factor of frame m, usually deter-
mined based on the noise level in the frame. D ∈ IRK×N is
a sparse neighborhood differentiation matrix whose kth row
has nonzero elements corresponding to the pixels that form
the kth clique, and ψk(·) is the potential function de ned on
the cliques within this neighborhood system.

2.1.2. Tracer Kinetic Modeling

Tracer kinetic behaviors in dynamic PET imaging are often
described by compartmental models which mathematically
can be represented by a set of ordinary differential equations,

d
dt

c(t) = Kc(t) + Lu(t) (5)

where c(t) is a column vector representing the activity con-
centration of different tissue compartments at time t, K and
L are the kinetic parameter matrices which comprise of vari-
ous rate constants, and u(t) denotes the system input.

The quantity that PET measures is the total concentration

CT(t) = (1− fv)1′c(t) + fvCwb(t), (6)

where 1 is the all-one vector, fv is the fractional volume of
the blood in the tissue, and Cwb(t) is the tracer concentration
in the whole blood. In practice, PET data are binned into
discrete time frames. Thus the measured quantity in frame m
is the average concentration

zm(κ) =
1

Δtm

∫ tm,e

tm,s

CT(τ)e−λτ dτ, (7)

where tn,s and tn,e denote the starting and ending time of
frame n, respectively, Δtm = tm,e − tm,s, λ is the decay
constant of the radiotracer, and κ contains the kinetic param-
eters to be estimated.

Given a measured TAC, ẑ = {ẑm}, kinetic analysis is
to estimate the rate constants in K and L, and fv, which is
usually accomplished by using a NLS formulation

κ̂ = argmin
κ

∑
m

wm

(
ẑm − zm(κ)

)2

, (8)

where {wm} are the weighting factors. A usual choice of wm

is Δtm. A Levenberg-Marquart algorithm is commonly used
to solve (8).

2.2. Direct Methods

Direct methods combine the kinetic model and image recon-
struction into a single formula. Let κj denote the kinetic pa-
rameters for pixel j and κ = {κj}, the log-likelihood func-
tion is,

L(y|κ) =
∑
i,m

yim log ȳim(κ)− ȳim(κ). (9)

The expectation of the data is now a nonlinear transform of
κ,

ȳim(κ) =
∑

j

pijxm(κj) + rim, (10)

where xm(κj) denotes the image intensity at pixel j in the
frame m due to the kinetics κj . It relates to the time activity
curve zm(κj) via

xm(κj) = zm(κj)Δtm. (11)

The solution of the direct reconstruction is

κ̂ = arg max
κ
L(y|κ) − βU(

x(κ)
)
. (12)

where the penaly term U(
x(κ)

)
has a similar form as (4).

Here the regularization is applied on the image intensity.

3. THE PROPOSED ALGORITHM

The proposed algorithm resembles an iterative implementa-
tion of the indirect method. There are two steps at each itera-
tion:
(1) Image reconstruction

x̂n+1
jm = xm(κn

j ) +
gn

jm

wn
jm

, (13)

(2) Kinetic tting

κ̂n+1
j = arg max

κj

−
∑
m

wn
jm

(
xm(κj)− x̂n+1

jm

)2

, (14)

where gn
jm denotes the gradient of pixel j in frame m at the

nth iteration, and wn
jm is a weighting factor determined by the

speci c algorithm (explained below).
The advantage of the proposed algorithm is that any exist-

ing NLS algorithm for kinetic tting can be directly applied
in the second step with the selected weighting factors. It is
worth noting that the weights in (14) are determined by the
reconstruction algorithm, as compared to that the weights in
the NLS tting in indirect methods (including their empirical
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iterative implementations) are selected by users. Another dis-
tinction is that it is not necessary to run the NLS tting in (14)
till convergence at each iteration. Here we use two iterations
of the Levenberg-Marquart algorithm. Therefore, each itera-
tion of the direct reconstruction takes about the same amount
of time as that for one iteration of the dynamic image recon-
struction and two iterations of the Levenberg-Marquart algo-
rithm.

In the following, we derive the expressions of gn
jm and

wn
jm in (13) using the optimization transfer principle [4].

3.1. Paraboloidal Surrogate Function

We use the paraboloidal surrogate function proposed by Fessler
et al in [5] to approximate the Poisson log-likelihood function
and a quadratic surrogate function to approximate the penalty
function at each iteration. The overall surrogate function for
the penalized log-likelihood in (12) is

Q(κ|κn) =
∑
m

(gn
m)′Δxm − 1

2
Δx′

mW n
mΔxm, (15)

where Δxm = xm(κ)−xm(κn), gn
m is the gradient vector of

the penalized log-likelihood, and W n
m is the curvature matrix.

gn
m and W n

m are given by

gn
m = P ′

( ym

ȳm(κn)
− 1

)
− βmD[ωn

m]Dxm(κn) (16)

W n
m = P ′D[cn

m]P + βmD′D[ωn
m]D (17)

where βm = βαm and D[·] denotes a diagonal matrix. cn
m is

the curvature of the surrogate function for the log-likelihood
function and ωn

m the curvature of the surrogate function for
the penalty function. They both can be calculated analytically
[5].

3.2. Coordinate Ascent

To estimate the iterate of κ by maximizing the surrogate func-
tionQ(κ|κn), a pixel-wise coordinate ascent (CA) algorithm
can be applied

κ̂n+1
j = argmax

κj

Qj(κj |κn, κ̂), (18)

Qj(κj |κn, κ̂) =
∑
m

ĝn
jmΔxjm − 1

2
ŵn

jmΔx2
jm, (19)

where Δxjm = xm(κj)− xm(κn
j ) and

ĝn
jm = gn

jm +
∑
l �=j

[W n
m]jl

(
xm(κ̂l)− xm(κn

l )
)
, (20)

ŵn
jm = [W n

m]jj =
∑

i

cn
imp2

ij + βm

∑
l∈Nj

ωn
jlm, (21)

where Nj denotes the neighbors of the jth pixel and ωn
jlm

is
the element of ωn

m that is associated with the clique formed
by pixels j and l.

Maximizing Qj(κj |κn, κ̂) with respect to κj is equiva-
lent to

κ̂n+1
j = argmax

κj

−1
2

∑
m

ŵn
jm

(
xm(κj)− x̂n+1

jm

)2

, (22)

where

x̂n+1
jm = xm(κn

j ) +
ĝn

jm

ŵn
jm

. (23)

3.3. Separable Paraboloid

The CA-INLS algorithm requires column-access of the sys-
tem matrix P , which is inef cient for factorized system ma-
trices. By using the convex property of (15), we can get a
separable surrogateQs(κ|κn)

Qs(κ|κn) =
∑
m

(gn
m)′Δxm − 1

2
Δx′

mD[wn
m]Δxm, (24)

where wn
m is given by

wn
jm =

∑
i

cn
impijpi + 2βm

∑
l∈Nj

ωn
jlm (25)

where pi =
∑

j pij .
The new surrogate is composed of separable paraboloids

(SP). Maximizing Qs(κ|κn) with respect to κ is equivalent
to

κ̂n+1
j = argmax

κj

−1
2

∑
m

wjm

(
xm(κj)− x̂n+1

jm

)2

, (26)

where

x̂n+1
jm = xm(κn

j ) +
gn

jm

wn
jm

. (27)

Convergence: Both the CA-INLS and SP-INLS algorithms
are monotonically convergent. However, because of the non-
linear relationship between the dynamic PET data and kinetic
rates, the log-likelihood functionL(y|κ) is non-concave with
respect to κ. As a result, both algorithms can only guarantee
convergence to a local optimum.

4. SIMULATION RESULTS

We used computer simulations to validate the proposed al-
gorithms based on a brain phantom composed of gray mat-
ter, white matter and a small tumor inside the white matter
(Fig. 1). Different FDG kinetics under a three-compartment
model were simulated for different regions. The scanning se-
quence consists of 24 frames over a period of 90 minutes. The
TACs were integrated for each frame and forward projected to
generate dynamic sinograms. Poisson noise was then added,
which resulted in a total number of events over the 90 min-
utes equal to 50M. Forty noisy datasets were generated and
processed independently by the direct method and indirect
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Fig. 1. The phantom and the noise-free regional time activity
curves used in the simulation.
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Fig. 2. The bias and variance images of the direct and indirect
algorithms.

method to estimate the kinetic parameters. Here we focus
on the estimation of the in ux rate, a parameter that is related
to the glucose metabolic rate.

Fig. 2 shows the bias and variance images of the in ux
rate images generated by the indirect and direct algorithms
(CA-INLS) with quadratic penalty functions. The regular-
ization parameters in the two approaches were adjusted to
achieve similar bias (Fig. 2(a) and (b)). Obviously the direct
algorithm results in less variance than the indirect algorithm
(Fig. 2(c) and (d)).

Fig. 3 compares the tradeoff between bias and standard
deviation of the in ux rate estimated by the direct and indi-
rect methods for different regions in the brain phantom. The
bias-std curves were obtained by varying the regularization
parameters. The results show that the proposed INLS method
results in less bias at all the noise levels compared with the
indirect method.
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Fig. 3. The bias versus standard deviation tradeoff curves of
the direct and indirect algorithms by varying the regulariza-
tion parameters.

5. CONCLUSIONS

This paper develops a class of iterative NLS algorithms for di-
rect reconstruction of parametric images. Each iteration of the
proposed algorithm consists of one image update followed by
a NLS tting. The algorithms are simple, easy to implement
and monotonically convergent.
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